nbprint.config.outputs.NBConvertOutputs¶
- pydantic model nbprint.config.outputs.NBConvertOutputs[source]¶
Bases:
OutputsShow JSON schema
{ "title": "NBConvertOutputs", "type": "object", "properties": { "tags": { "items": { "type": "string" }, "title": "Tags", "type": "array" }, "role": { "$ref": "#/$defs/Role", "default": "outputs" }, "ignore": { "default": true, "title": "Ignore", "type": "boolean" }, "css": { "anyOf": [ { "type": "string" }, { "format": "path", "type": "string" }, { "type": "null" } ], "default": "", "title": "Css" }, "esm": { "anyOf": [ { "type": "string" }, { "format": "path", "type": "string" }, { "type": "null" } ], "default": "", "title": "Esm" }, "classname": { "anyOf": [ { "type": "string" }, { "items": { "type": "string" }, "type": "array" }, { "type": "null" } ], "default": "", "title": "Classname" }, "attrs": { "anyOf": [ { "additionalProperties": { "type": "string" }, "type": "object" }, { "type": "null" } ], "title": "Attrs" }, "root": { "default": "/home/runner/work/nbprint/nbprint/outputs", "format": "path", "title": "Root", "type": "string" }, "naming": { "default": "{{name}}-{{date}}", "title": "Naming", "type": "string" }, "embedded": { "default": false, "description": "Whether this output is expected to run from its embedding inside the notebook.", "title": "Embedded", "type": "boolean" }, "hook": { "default": null, "title": "Hook" }, "postprocess": { "default": null, "title": "Postprocess" }, "target": { "anyOf": [ { "enum": [ "ipynb", "notebook", "html", "webhtml", "pdf", "webpdf" ], "type": "string" }, { "type": "null" } ], "default": "html", "title": "Target" }, "execute": { "anyOf": [ { "type": "boolean" }, { "type": "null" } ], "default": true, "title": "Execute" }, "timeout": { "anyOf": [ { "type": "integer" }, { "type": "null" } ], "default": 600, "title": "Timeout" }, "template": { "anyOf": [ { "type": "string" }, { "type": "null" } ], "default": "nbprint", "title": "Template" }, "collect_outputs": { "default": false, "description": "Whether to collect cell outputs into the context. Cells with tag `nbprint:output:<key>` will be collected under `<key>`.", "title": "Collect Outputs", "type": "boolean" }, "execute_hook": { "default": null, "title": "Execute Hook" }, "nbconvert_hook": { "default": null, "title": "Nbconvert Hook" } }, "$defs": { "Role": { "enum": [ "undefined", "configuration", "context", "outputs", "parameters", "content", "page", "layout" ], "title": "Role", "type": "string" } } }
- Fields:
collect_outputs (bool)execute (bool | None)execute_hook (ccflow.exttypes.pyobjectpath.PyObjectPath | None)nbconvert_hook (ccflow.exttypes.pyobjectpath.PyObjectPath | None)target (Literal['ipynb', 'notebook', 'html', 'webhtml', 'pdf', 'webpdf'] | None)template (str | None)timeout (int | None)
- field target: Literal['ipynb', 'notebook', 'html', 'webhtml', 'pdf', 'webpdf'] | None = 'html'¶
- field execute: bool | None = True¶
- field timeout: int | None = 600¶
- field template: str | None = 'nbprint'¶
- field collect_outputs: bool = False¶
Whether to collect cell outputs into the context. Cells with tag nbprint:output:<key> will be collected under <key>.
- field execute_hook: PyObjectPath | None = None¶
A callable hook that is called after nbconvert execution of the notebook. It is passed the config instance. If it returns something non-None, that value is returned by run instead of the output path.NOTE: Parent/child class hooks may also be called.
- field nbconvert_hook: PyObjectPath | None = None¶
A callable hook that is called after nbconvert of the previously executed notebook. It is passed the config instance. If it returns something non-None, that value is returned by run instead of the output path.NOTE: Parent/child class hooks may also be called.
- property outputs: dict[int | str, list[dict[str, str]]]¶
- NBConvertOutputs.validate_target[source]
- run(config: Configuration, gen: NotebookNode) Path[source]¶
- model_post_init(context: Any, /) None¶
This function is meant to behave like a BaseModel method to initialise private attributes.
It takes context as an argument since that’s what pydantic-core passes when calling it.
- Parameters:
self – The BaseModel instance.
context – The context.